M1 .D				[1]
M2. B				[1]
M3 .A				[1]
M4. (a)	(i)	determine area under the graph [or determine area between line and time axis] ✓	1	
	(ii)	 as seen line starts at very low current (within bottom half of first square) ✓ either line continuing as (almost) horizontal straight line to end ✓ ✓ or very slight exponential decay curve ✓ which does not meet time axis ✓ OR suitable verbal comment that shows appreciation of difficulty of representing this line on the scales involved ✓ ✓ ✓ Use this scheme for answers which treat the information in the question literally. 	3	
		as intended line starts at half of original initial current ✓ slower discharging exponential (ie. smaller initial gradient) than the original curve ✓ correct line that intersects the original curve (or meets it at the end) ✓ Use this scheme for answers which assume that both		

resistance values should be in Ω or $k\Omega$. $\frac{1}{2}$ initial current to be marked within $\pm 2mm$ of expected value.

3

(b) (i) energy stored (= $\frac{1}{2}$ CV^2) = $\frac{1}{2}$ × 0.12 × 9.0² \checkmark (= 4.86 (J)) 4.86 = 3.5 Δh \checkmark gives Δh = (1.39) = 1.4 (m) \checkmark to 2SF only \checkmark

SF mark is independent.

Students who make a PE in the 1st mark may still be awarded the remaining marks: treat as ECF.

4

(ii) energy is lost through heating of wires ${f or}$ heating the motor (as capacitor discharges) \checkmark

Allow heating of circuit or I² R heating.

energy is lost in overcoming frictional forces in the motor (or in other rotating parts) ✓

Location of energy loss (wires, or motor, etc) should be indicated in each correct answer.

[or any other well-expressed sensible reason that is valid e.g. capacitor will not drive motor when voltage becomes low ✓]

Don't allow losses due to sound, air resistance or resistance (rather than heating of) wires.

max 2

[10]

M5.(a) (i) 7.5×10^{-6} (C) or 7.5μ (C)

В1

1

(ii) Suitable scale and charge from (i) correctly plotted at 2.5 V Large square = 1 or 2 μC or With false origin then large square = 0.5 μC

B1

Only a Straight line drawn through or toward origin

Line must be straight, toward origin **and** only drawn between 2.5 V and 1.2 V (\pm 1 / 2 square on plotted points)

Α1

3

(b) Attempted use of $E=\frac{1}{2}CV^2$ Or attempted use of $E=\frac{1}{2}QV$

C1

9.38 (
$$\mu$$
J) - 2.16 (μ J) seen
or E = $\frac{1}{2} \times 3 \times 10^{-6} \times 2.5^{2} - \frac{1}{2} \times 3 \times 10^{-6} \times 1.2^{2}$ seen
or E = $\frac{1}{2} \times 3 \times 10^{-6} \times (2.5^{2} - 1.2^{2})$ seen
or E = $\frac{1}{2} \times 7.5 \times 10^{-6} \times 2.5 - \frac{1}{2} \times 3.6 \times 10^{-6} \times 1.2$ seen

C1

$$7.2 \times 10^{-6}$$
 (J) c.a.o

Α1

•

3

(c) (i) Use of $V = V_0 e^{-\frac{t}{RC}}$ or equivalent with

$$Q = Q_0 e^{-\frac{t}{RC}}$$

$$R = -\frac{\left(\frac{1.4 \times 10^{-3}}{\ln\left(\frac{1.2}{2.5}\right) \times 3 \times 10^{-8}}\right)}{\text{or } R = -\frac{\left(\frac{t}{\ln\left(\frac{V_o}{V}\right) \times C}\right)}{\text{or } R} = \frac{\left(\frac{t}{\ln\left(\frac{V_o}{V}\right) \times C}\right)}{\ln\left(\frac{V_o}{V}\right) \times C}$$

C1

636 or 640 (Ω)

A1

3

(ii) Current decreases (I = V / R) / describes rate of flow of electrons decreasing / rate of flow of charge decreases

Charge lost more slowly <u>so</u> pd falls more slowly because V∝Q or Q=CV where C is constant

A1 MAX 2

[12]

M6.(a)
$$d = \frac{8.9 \times 10^{-12} \times 2.3 \times 250 \times 10^{-4}}{370 \times 10^{-12}}$$

1.4 ×10⁻³ m (1.4 (1.38) mm) ✓

Data substitution – condone incorrect powers of 10 for C and Δ

2

(b) New capacitance = 161 pF ✓

New V = 0.13 nC / 161 pF = 81 V

2

(c) Energy stored = $\frac{1}{2} \times 161 \times 10^{-12} \times 81^2$ 0.53 µJ ✓

2

(d) Energy increases because:

In the polar dielectric molecules align in the field with positive charged end toward the negative plate (or WTTE). ✓

Work is done on the capacitor separating the positively charged surface of the dielectric from the negatively charged plate (or vice versa). ✓

[8]

2

M7.C

[1]

M8.B [1] **M9.**B [1] **M10.**B [1] **M11.**D [1] **M12.**C [1] M13. D [1] M14. D [1]

Page 6

M15. D

[1]

M16. C

[1]